Homogeneity of differential inclusions

نویسندگان

  • Emmanuel Bernuau
  • Denis Efimov
  • Wilfrid Perruquetti
  • Andrey Polyakov
  • Andrei Polyakov
چکیده

The notion of geometric homogeneity is extended for differential inclusions. This kind of homogeneity provides the most advanced coordinate-free framework for analysis and synthesis of nonlinear discontinuous systems. The main qualitative properties of continuous homogeneous systems are extended to the discontinuous setting: the equivalence of the global asymptotic stability and the existence of a homogeneous Lyapunov function; the link between finite-time stability and negative degree of homogeneity; the equivalence between attractivity and asymptotic stability are among the proved results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE FULL AVERAGING OF FUZZY DIFFERENTIAL INCLUSIONS

In this paper the substantiation of the method of full averaging for fuzzy differential inclusions is considered. These results generalize the results of [17, 20] for differential inclusions with Hukuhara derivative and of [18] for fuzzy differential equations.

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

On the averaging of differential inclusions with Fuzzy right hand side with the average of the right hand side is absent

In this article we consider the averaging method for differential inclusions with fuzzy right-hand side for the case when the limit of a method of an average does not exist. 

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016